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Asymmetric Exclusion Model with Two Species: 
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A simple two-species asymmetric exclusion model is introduced. It consists of 
two types of oppositely charged particles driven by an electric field and hopping 
on an open chain. The phase diagram of the model is calculated in the mean- 
field approximation and by Monte Carlo simulations. Exact solutions are given 
for special values of the parameters defining its dynamics. The model is found 
to exhibit two phases in which spontaneous symmetry breaking takes place, 
where the two currents of the two species are not equal. 

KEY WORDS: Stochastic lattice gas; excluded volume; steady states; phase 
transitions; spontaneous symmetry breaking. 

1. INTRODUCTION 

One-dimensional  models of particles hopping in a preferred direction provide 
simple nontr ivial  realizations of system out of thermal equilibrium, tl-3) 
For example, a system of particles with hard-core interactions, which make 
nearest-neighbor hops in a preferred direction on a one-dimensional  lattice, 
may be mapped onto a discretized growth model in 1 + 1 dimensionsJ 4-8) 
Such a system of particles is known as an asymmetric exclusion model, tg) 
This class of models and their generalizations in two dimensions have been 
studied as examples of driven diffusive systems.t~~ 11) They exhibit interesting 
collective phenomena,  such as boundary- induced phase transitions c12~ 
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and phase transitions induced by a single defect in the latticeJ s' 13) Also, 
the dynamics of shocks or moving fronts may be studied within these 
models.(l*qs) 

The totally asymmetric exclusion model corresponds to the case where 
particles are restricted to move only forward. This model has been solved 
exactly in one dimension and with open boundary conditions.(19-21) A simple 
way of obtaining the solution is to represent the steady state of the system 
by a product of noncommuting matrices.(2~ This method has been extended 
to the case of a system consisting of two species of particles moving on a 
ring. (22) This allows the structure of shocks to be examined. 

In the present work we study a totally asymmetric one-dimensional 
exclusion model consisting of two species of particles with open boundary 
conditions. The two species of particles move in opposite directions and for 
convenience we refer to them as "positive" and "negative" particles. This 
model possesses a rich phase diagram and is found to exhibit spontaneous 
symmetry breaking, which is an unusual phenomenon in one dimension. 
A preliminary discussion of this model has been given in ref. 23. 

There are several physical situations modeled by exclusion processes 
for which two species of particles are required. Repton models of diffusion 
of polymer chains and gel electrophoresis may be considered as exclusion 
processes with two species of particles, (24-27) as can certain models of 
growing interfaces in 1 + 1 dimensions. (8' 13) 

Let us define the model we consider. Each site of a one-dimensional 
lattice of length N may be occupied by a positive particle or a negative par- 
ticle or be empty. The system evolves according to a stochastic dynamical 
rule as follows. In each infinitesimal time step dt the following events may 
occur at each nearest-neighbor pair of sites i, i + 1 ( 1 ~< i ~< N -  1 ): 

( + )i (0) i+,  --} (0)i ( + )~+ 1 

( + ) , ( - ) , + 1  ~ ( - ) ~ ( + ) , + 1  

(0)i ( - )~+1 --} ( - ) ,  (0),-+1 

with probability dt 

with probability q dt 

with probability dt 

(1.1) 

where ( + ) ;  and ( - ) ;  indicate a positive or negative particle at site i, 
respectively, and (0),. indicates that site i is empty. 

At the boundaries, particles may be introduced and removed. Thus in 
each infinitesimal time step dt, the following events may occur at the left- 
hand boundary (i = 1 ): 

(0)1 -"} ( "~- )l with probability ctdt 

( - ) 1 --} (0) i with probability fl dt 
(1.2) 
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and the following at the right-hand boundary (i = N): 

(O)N~ ( - ) N  with probability o~dt 
(1.3) 

( JV )N"~ (O)N with probability fl dt 

This model may be thought of in terms of two single-species totally 
asymmetric exclusion processes. The processes interact through the exclu- 
sion interaction and through the exchange of + and - particles at rate q. 
The phase diagram for the single-species model, obtained by a matrix 
method, (2~ consists of a maximal-current phase, a high-density phase, and 
a low-density phase. For certain cases ( f l=  1 or 0c= oo) we have been able 
to use a similar method to solve our model exactly and we find phases 
analogous to the maximal-current and low-density phases of the single- 
species model. These are examples of what we shall refer to as symmetric 
phases, for which the charge currents of positive and negative particles are 
equal: J+  = J - .  In this work we show the existence of phases where 
J+  ~ J - .  In theses phases the symmetry of the dynamics (1.1)-(1.3) under 
interchange of positive and negative particles and of their directions is 
spontaneously broken. 

For the sake of clarity let us summarize our main results: 

(i) Through an exact solution given by the matrix method for fl = 1 
we show that the two-species exclusion process exhibits a boundary- 
induced phase transition, between a low-density phase and a power-law 
phase, similar to that of the one-species model. This transition only occurs 
for q < 2 .  

(ii) By use of mean-field theory we explore other ranges of ft. For q = 1 
the mean-field equations can be solved analytically and we demonstrate the 
existence of two broken symmetry phases and calculate the mean-field phase 
diagram. These broken symmetry phases provide a novel class of boundary- 
induced phase transitions. 

For q < 1 we show by comparison of the exact solution and mean-field 
theory that the latter incorrectly predicts the order of the transition. This 
is surprising since for the one-species exclusion process the mean-field 
predictions for the phase diagram are correctJ 19) On the other hand, 
for q = 1 the predictions of the mean-field theory (in particular those per- 
taining to the broken symmetry phases) are well borne out by Monte Carlo 
simulations. 

The paper is organized as follows. In Section 2 we present the exact 
solutions for the cases fl = 1 and a = oo--technical details being left to 
Appendices A and B--and discuss the resulting phase diagram and density 
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profiles. In Section 3 we investigate the mean-field approximation to the 
stochastic model, first solving the case q = 1 then studying q # 1 numeri- 
cally. In Section 4 we show that Monte Carlo simulations provide strong 
evidence that the broken symmetry phases exist in the stochastic model. 
We conclude in Section 5 and discuss our results in terms of an interface 
model. 

2. MATRIX  SOLUTIONS 

In this section we deal with two cases where an exact solution for the 
stationary state of the model can be obtained using the matrix method 
introduced in ref. 20. This method has previously been applied to study the 
present model in a ring geometry. ~22) 

Before reviewing this approach we define some notation. We introduce 
two occupation numbers, r~ and 0 i, for each site i, where ri = 1 if site i is 
occupied by a positive particle and 0 otherwise. Similarly, 0~ = 1 if site i is 
occupied by a negative particle and 0 otherwise. As the particles are sub- 
jected to an excluded-volume interaction, only one of z" i and 0; may be non- 
zero and the configuration of the system is uniquely defined by the set of 
occupation numbers { r;, 0~}. Here we are interested in the nonequilibrium 
steady state (t ~ o0) of the system, that is, PN({ r~, 0g}) (the probability of 
finding the system of size N in configuration { r,., 0,.} ). 

It is convenient to consider unnormalized weights fN({ ~,  0~} ) defined 
through 

PN( { r,, 0,} ) =fN( { r,, 0,} ) (2.1) 
Zlv 

with 

zN= E o,}) (2.2) 
{ ri, Oi} 

Following ref. 20, we make the ansatz that fN({r;, 0;}) may be constructed 
a s  

N 

fN({r,,O,})=(W[ l-I [r,D+O,E+(1-ri-Oi) A] IV) (2.3) 
i = l  

The expression in the brackets implies the presence of a matrix D if site i 
is occupied by a positive particle, a matrix E if site i is occupied by a 
negative particle, and a matrix A if site i is empty. The action of the vectors 
IF)  and (WI on the matrix product gives a scalar for fN. Formally the 
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solution of the problem reduces to finding a set of matrices and vectors 
such that fN is a stationary solution of the master equation describing the 
time evolution of the system. 

By using this ansatz we found an exact solution in the following two 
cases. 

2.1.  S o l u t i o n  f o r  Q =  oo 

When ~ m  it is clear from (1.2), (1.3) that, as soon as a hole 
appears at a boundary site, it is removed. Thus in the steady state the 
system will be devoid of holes. This is equivalent to saying that any time 
a matrix A occurs in the system the corresponding weight is zero. The 
dynamics given in Eqs. (1.1)-(1.3) reduces to 

(+) , ( - ) ,+~  ~ ( - ) , ( + ) , + ,  

( - ) , ~ ( + ) l  

( + ) u ~ ( - ) ~ ,  

with probability q dt 

with probability fl dt 

with probability fl dt 

(2.4) 

If one now calls the negative particles "holes," the problem reduces to the 
single-species asymmetric exclusion process with open boundaries, here 
with the hop rate in the bulk set to q. Rescaling time so that this hop rate 
is unity, we find that the model reduces to a one-species dynamics with 
effective rates of adding and removing a particle equal to fl/q. 

For this model the matrices D, E may be chosen to satisfy 

q q <WIE=~<WI; DIV>=~IV>; D E = D + E  (2.5) 

Explicit forms for the matrices and vectors satisfying these conditions are 
given in ref. 20, and using results given in this reference, one finds in the 
limit N---, oo two possible phases: 

For  13/q> 1/2. The current is given by J+ =q/4 and the density of 
positive particles decays as one moves away from the left-hand boundary 
to a constant bulk value according to a power law 

1 1 
( r . )  ~-~4 2 /-~nl/Z+ ... for large n (2.6) 

One can deduce the decay in the density of negative particles and the decays 
at the right-hand boundary through the symmetry ( z ; ) =  (ON-i+t) and 
(r ,)  + (0i) = 1. 
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For fJ/q<l/2. The current is given by J+=fl/q(1-fl/q) and the 
density profile is linear in the bulk 

q 

This phase can be understood as a superposition of shocks, the position of 
which may be anywhere on the lattice with equal probability, giving rise to 
the linear density profileJ ~9) 

2 .2 .  S o l u t i o n  f o r  13 = 1 

By considering the master equation for the time evolution of the 
system and the form o f fN  in (2.3), it is shown in Appendix A that the 
matrices and vectors satisfy the following algebra. From the left-hand 
boundary 

( WI E = q( WI (2.8) 

( Wl A =q ( Wl (2.9) 
0~ 

from the right-hand boundary 

D IV> = q  IV> (2.10) 

A IV) =q IV) (2.11) 

and from the bulk 

D A = q A  (2.12) 

A E = q A  (2.13) 

DE = D + E (2.14) 

Equation (2.14) implies that D and E either commute or are of infinite 
dimension/2~ In the commuting case one may as well take scalars since 
only the action of D, E on the boundary vectors matters. Then from (2.8), 
(2.10), and (2.14) one finds that q=2 .  So, if q r  one must use infinite- 
dimensional matrices for D and E. 

If one chooses 

( Wl V) = 1 (2.15) 
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then it may be seen from Eqs. (2.9) and (2.11 )-(2.13) that a suitable choice 
for A is 

A = q  IV>< WI (2.16) 
0c 

and we are left to satisfy (2.8), (2.10), and (2.14). The algebra given in 
Eqs. (2.8)-(2.14) is independent of the basis chosen, and while in principle 
one may perform the calculation without appeal to a basis, here we choose 
to work with the following representation: 

< W l = < l l ;  I V > = l l >  (2.17) 

We have used the notation (xl = Ji, x and Ix> = J.,,j; hence 

A=-q II><l[ (2.18) 
o~ 

and one can check that 

/o1 o 
D = / 0  0 1 1 , E = / 0  1 1 0 (2.19) 

0 0 0 1 0 0 1 1 

satisfy (2.8)-(2.14), where 

b2=q(2-q) (2.20) 

Current and Density Profiles for 13= 1. It follows from (2.1) 
that the average density of positive particles at site i is given by 

1 
<r,>=-ff-- Y, rJN({rk, Ok}) (2.21) 

L N  {~k, 8k} 

Writing down similar expressions for < 0i) and (ai>, where a~ = 1 - r ~ - 0 ;  
is the occupation number of holes at site i, and substituting in the explicit 
forms for fN and ZN, we find 

< W[ G ' - ' D G  N-'  I V) 
< ri> = < WI GNIV> (2.22) 

< W I G ' -  lEG N- '  IV> 
<0~> = < WI GNIV> (2.23) 

< W [ G ' - ' A G N - ' [ V >  q(WIG'-'IV><WIGN-'}V> 
(G-> = - (2.24) 

( W] G N IV> cc < W] G 'v IV) 
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where 

G = D + A + E  (2.25) 

and we have used the expression for A given in Eq. (2.16). 
Since a positive particle moves forward with rate one if there is a hole 

to its right and rate q if there is a negative particle to its right, the current 
J+ of positive particles between sites i and i +  1 is given by the following 
correlation function: 

J+ = ( rg(ai+ i + qOi+ l) ) (2.26) 

Similarly the current of negative particles (with our convention that this 
current is positive from right to left) is given by 

J -  = ( (a , .+  qr;) 0,+,)  (2.27) 

Using the matrix algebra given in Eqs. (2.8)-(2.14), we have 

j +  = ( WI G;-1D(A + qE) G N-;-1 IV> 

j -  = 

( W[ G N-I  IV) 

- q  < wi GNIV> ( W[ G N [V) 

(Wl  G ' - ~ ( A + q D )  EG N- ' -~  IV) (Wl  G N-~ IV) 

( W I G N I V )  --q ( W I G N I V >  

(2.28) 

where 

a b 0 0 - . . \  

b 2 1 0 ...  ) G = / 0  1 2 1 ... (2.29) 

0 0 1 2 ... 

! i i i 

a = 2q + q/o: and b 2 = q(2 - q) (2.30) 

In Appendix B we show that as n ~ ~ ,  ( W  I G " I V )  has the following 
asymptotic forms: 

This expression for the current is independent of i, as it should be, since the 
system is in a stationary state, and is given directly in terms of the matrix 
elements of powers of G. We shall start by looking at these matrix 
elements, hence calculating J and ( a i ) ,  which will enable us to find and 
interpret the phase diagram for fl = 1. 

Recall that, from (2.18), (2.19), and (2.25) we may choose G as 
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(i) For  q/o~ < (q - -  2 )  2 and q < 2 

4 "+l  q (2 - -q )  
< WI G ~ IV> _ x/C~n3/2 [ ( q _  2) 2 _q /~]2  

(ii) For  q/ct = (q - 2) 2 and q < 2 

4" 1 
< W[ G" IV> - x / ~ n U 2 q ( E _ q )  

(iii) For  q~>2, or q / o t > ( q - 2 )  2 and q < 2 ,  

( 1 - x  2) [ ( x + l ) 2 ] "  
< W I G  ~ IV> - 1 - ( 1 -  q)2 x2 [ - - ~ J  

where 

(2.31) 

(2.32) 

(2.33) 

2(q - 1) + q/oL - [4(q -- 1) q/oL + q2/ot2] 1/2 
x - 2(q - 1 )2 (2.34) 

One can check that for q = 2, (2.33) reduces to < W[ G" IV> = 
(4 + 2/~)", as it should in this case since the 1, I element of G decouples 
from the rest of the matrix. Using these asymptotic forms and (2.28) to 
calculate the asymptotic forms of the current, we identify two phases: 

(a) For  q < 2 and q/o~ <~ (q - 2) 2 

J = q  (2.35) 
4 

(b) For  q~>2, or q < 2  and q / o ~ > ( q - 2 )  2, 

J -  q______fx (2.36) 
( x + l )  2 

We will refer to phase (a) as a power-law phase and to phase (b) as an 
exponential phase, the reason being that in the power-law phase, Eq. (2.24) 
implies that the density of holes decays to zero as a power law of the 
distance from the boundary  

( ! q21a-q) 
~ x /~  n3/2 5[ ( q -- 2) 2 -- q/a]2 

<a">~-- I 1 ~ 1 
~. 2 ~ n --]/- ~(--2 - q----) 

for q < 2, q < (q- -  2) 2, and n large 
0~ 

for q < 2, -q = (q - 2 )  2, and n large 

(2.37) 
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whereas on the exponential phase the density of holes decays exponentially 
to a bulk density given by 

(a.>-- ,-q ( 1 - x  2) x 
~x 1 - ( 1  -q)2x2(x+ 1) 2 (2.38) 

for q~>2, or q < 2 ,  q/o~>(q-2) z, and n large. 
One should note from (2.35), (2.36) that in the power-law phase the 

current is maximal, i.e., greater than in the exponential phase. 
In order to calculate the particle densities one can consider 

i 

( z i ) =  ~ dp+<r~)  (2.39) 
p = 2  

where 

ap= <rp> - <rp_l> = 
<Wl G P - 2 [ G D - D G ]  G N-p IV> 

< wl GNIV> 

Now from (2.19) one can check that 

G D - D G =  - b  2 II><ll + b ( a - q -  1)11><21 

+b(q- 1) 12>< 11 + (b 2 -  1) 12><21 

(2.40) 

(2.41) 

Using the action of G on (21, 12> to write 

12> = ~ ( G  I I > - a  I1>); <21 = b ( <  II G - a <  11) (2.42) 

one finds 

di=~[ (2a--b2--~2)~-~ <ai-l>u-l +(-~z--q--1) <ai-l>N 

(a ) bZ-1 q (ai>N+l ] + -~--a--l+q (ai>N+ b---~jN+ 1 (2.43) 

where JN is the current (2.28) in a system of size N and <ai)N is the 
density of holes (2.24) at site i in a system of size N. One can see that in 
the power-law phase, for large i, the sum of order-/terms <a)  which decay 
like i-3/2 will generate a decay of i -  1/2 for the particle densities. In fact one 
can show by a more careful calculation that 
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I!' - + 2  ~/C~nl/2+ for q < ( q - - 2 )  2 , ~  q < 2 ,  and n large 

( r , )  ~ 1 q -  1 q 
- -  + -.. for - = ( q -  2) 2, q < 2, and n large 

~-2 + 2 .v/ ~ n U2 q c~ 
(2.44) 

The symmetry of the model under the interchange of positive and 
negative particles and their directions implies that (re)  = (0N-g+ 1). Using 
this relation and ( % ) +  ( 0 e ) +  ( a e ) =  1, one can obtain the densities of 
negative particles and decays to the bulk density from the right-hand 
boundary. The bulk density of positive particles is equal to the bulk density 
of negative particles. Thus the bulk density of positive particles is one-half 
in the power-law phase and can be simply obtained from (2.38) in the 
exponential phase. 

Remark. An easy way to obtain exact expressions for quantities of 
interest is to note that if one defines 

f} = D + (7o~/q - o 0  A 
(2.45) 

= E + ( 3 ~ / q -  ~) A 

where y and 3 satisfy 

y + 3 = 2q + q/o~ 
(2.46) 

y3 = q2 + q/o~ 

then one can check using the algebra (2.8)-(2.14) that 

D E = D + E = G  

(2.47) 
( wI ~ = ( wI 3; D IV) = ~ IV) 

These equations are the algebra of matrices used in the solution of a one- 
species asymmetric exclusion process with feeding rate 1/3 and removal 
rate 1/7. ~2~ Thus one can use Eq. (39) of ref. 20 to write down an exact 
expression for ( WIG jv IV), 

~p(2N - - l - - p ) ! 7  v + l - 3  v+l 
( W.[ GN[V)  = NY ( N - - p ) !  y--3  (2.48) 

p = l  

Similarly one can quickly obtain exact expression for the particle densities. 
For example, we find from (2.45) that 

( z , )  = ( r e )  - (yo~lq - o~)( a , )  (2.49) 

822/80/I-2-6 
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where ( f ; )  defined by 

( wI Gi-1[)G N-i IV> 
< ~i> = < W[ G ~ I V) (2.50) 

is the density of particles in a one-species exclusion process. Then, using 
Eq. (43) of ref. 20 and (2.24), we find an exact expression (for i ~N)  

N_,_] 2p! (wIG N-l- ' lV> 
( r ; ) =  ~ p ! ( p + l ) !  <WIG~'IV> p = 0  

+ ( W I G  ; -~IV)  N~+~ ( p - 1 ) ( 2 N - 2 i - p ) !  Y-P 
<WIGNIV) p=2 ( N - i ) ! ( N - i + l - p ) !  

< W I G i - I  [ V> < W I G N - `  I V> 

- - (Y-q)  ( WIG N IV) (2.51) 

and 

( Wl G ~:- i IV) 
(rN) =q (WI G~Vl v) (2.52) 

In this section we have given the exact solutions for the two planes 
(~= oo) and ( f l= 1) in the parameter space of0q fl, and q. In this way we 
have identified two phases: a maximal-current phase where the density 

4 , , 

3 

Exponential 

I 

Power-law 

0 i ~ I 
0 1 2 

q 

~3 

Fig. 1. The fl= 1 phase diagram (exact). The transition between the power-law phase and 
the exponential phase is continuous. The bold line marks the line of shock configurations. 
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profiles decay according to a power law and an exponential phase where 
the density profile decays exponentially. Also we have seen that for ~t = oo 
and fl < q/2 the density profile is a superposition of shocks. The informa- 
tion given here is summarized in the phase diagram given in Fig. 1. In the 
next section we explore other areas of the parameter space by the use of 
mean-field theory and provide evidence that further phases exist. Of course 
it remains a challenge to find exact solutions for these cases, too. 

3. MEAN-FIELD THEORY 

In this section we discuss the mean-field theory of the model for 
general values of a, fl, and q. We study in detail the q = 1 case, for which 
stationary solutions to mean-field equations may be found analytically. We 
then comment on some features of the phase diagram for q ~ 1, which may 
be obtained numerically. 

In the mean-field approximation correlations are ignored, and pair 
and higher correlation functions are written as products of average occupa- 
tion numbers. For example, 

( r ; r / )  = ( r i ) ( r ; )  (3.1) 

We define the mean-field densities of positive and negative particles at site 
i as 

Pi = ( "ri5 
m,.= (0,.) (3.2) 

Their time evolution is given by the following equations: 

dPi _ .+ .+ 
d ' - - - - ~ - J i _ l , i - J i ,  i+ l  

dm i (3.3) 
dt = JT+ 1. i - Ji_i- l 

where the mean-field currents read 
- +  

JJ.i+ 1 =pa[1 -Pi+~ - ( 1  - q )  mi+l]  
(3.4) 

Ji-+ l . i = m i +  t[ 1 - m i - ( 1  - q )  Pi] 

as is found by neglecting correlations in Eqs. (2.26), (2.27). At the boundaries 
one has 

'+ =0t(1 - m l )  Jo, l - P ]  

"+ 1 = f l P N  JN, N+ 

j ~ . o =  flml (3.5) 

j fc+t ,N= 0t(1 - - p N - - m N )  
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In a stationary state the currents of positive or negative particles are 
constant throughout the system, i.e., '+ = j +  Ji, i+l and jT+l , i=j-  for all i, 
and Eq. (3.4) define a mapping between the densities (Pi, mi) at site i and 
those at site i + 1. For 1 < i < N one has 

j+ =p i [1 -p i+  l - ( 1 - q )  mi+ ]] 
(3.6) 

j -  = m i + l [ 1 - m i - ( 1 - q ) p i ]  

whereas for the boundary sites 

j+  =0c(1 --Pl --ml) =flPN 
(3.7) 

j -  =tim, =0c(1 --pN--mN) 

Note that in mean field there is no a priori reason that the two 
currents should be the same, even for a finite system. In the stochastic 
system such a breaking of the symmetry may only occur in the limit of an 
infinite size, due to the ergodic nature of the finite system. 

3.1. Mean-Fie ld  Solution for q =  1 

It is readily seen from Eqs. (3.6) that when q = 1 the two bulk equa- 
tions decouple. Intuitively, the reason is that, away from the boundaries, a 
positive particle does not distinguish between a hole and a negative par- 
ticle, and neither does a negative particle distinguish between a hole and a 
positive particle. At the boundaries the introduction of a particle into the 
system requires that there be a hole on the site of entry. The two systems 
of particles are therefore coupled via the boundary equations (3.7). 

Defining 

~+ = ~ ( 1 - p l - m l )  J+ 

1 - P l  - j+/oc+j- / f l  

~(1 --pN--mN) j -  
~ -  - -  ( 3 . 8 )  

1 --ran j--/oc+j+/fl 

reduces the problem to two one-species totally asymmetric exclusion pro- 
cesses on a lattice of size N. One process corresponds to the + particles 
and the other corresponds to the - particles. We then have to solve two 
sets of equations of the form 

J+ =ct+( 1 - P l )  =pl (1  - P 2 )  . . . . .  PN-I(1 --PN) =flPu 
(3.9) 

j -  =tim I =m2(1 - m l )  . . . . .  raN(1 --raN_l) = 0C--(1 --raN) 
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The solutions of each separate set of equations are known t~9) and read as 
follows where 0c', fl', and j~ denote the feeding rate, removal rate, and 
current, respectively, of a single-species process: 

�9 0cs~> 1/2 and fls>~ 1/2 defines the power-law or maximal-current 
phase. The approach to the bulk density ( =  1/2) obeys a power law. The 
current is maximal with j s =  1/4. 

�9 0t' <fl~ and 0cs< 1/2 defines the low-density phase. The current is 
j ' =  ~'( 1 -  0t') and the bulk density, equal to ct', is approached exponen- 
tially. 

�9 fl' <cts and f l ' <  1/2 defines the high-density phase. The current is 
j ' = f l ' ( 1  _fls) and the bulk density, equal to 1 - f l s >  1/2, is approached 
exponentially. 

However, the two sets of equations (3.9) are still coupled via Eqs. (3.8), 
which therefore impose consistency conditions on the solutions of Eqs. (3.9). 

It is possible for the system as a whole to be in a broken symmetry 
state if one set of particles is in one single-species phase and the other one 
is in another. It is clear that not all the combinations of phases are allowed. 
For example, it is not possible to have one particle type in the power-law 
phase and the other in the high-density phase, since the total bulk density 
of particles would then exceed one. 

We shall start by studying the possible symmetric phases (j+ = j - ) ,  
then we will study the possible asymmetric ones (j+ # j - ) .  

3.1.1. S y m m e t r i c  Phases. The two allowed symmetric phases 
are the power-law/power-law and the low-density/low-density phases. In 
these phases j+  = j - ,  hence 

ct" = ct + = ~ -  = (3.10) 

and Pt = mN. 

Power-Law Symmetric Phase. In this phase j ' =  1/4 and the bulk 
densities are p = m = 1/2. The conditions for the existence of this phase are 

0r 1/2, f l>  1/2 (3.11) 

The second condition is guaranteed by the first one, which reads 

>~- (3.12) 
2 
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Low-Density Symmetric Phase. In this phase js  ___ 0cs( 1 - ~s) and the 
bulk densities are p = m = ~'. The conditions for the existence of this phase 
are 

~x'~< 1/2, r (3.13) 

The second condition is always satisfied and the first one reads 

~fl 1 
- - < -  (3.14) 
�9 +f l  2 

From (3.12), (3.14) one can see that for all values of ~ and fl there is 
a symmetric solution of the mean-field equations corresponding to one of 
the two symmetric phases. They correspond to the two phases found in the 
exact solution for fl = 1. The density profiles for these two phases are given 
in Figs. 2a-5a. As discussed later, in checking the stability of the symmetric 
phases it is found that the low-density phase becomes unstable to nonsym- 
metric perturbations in a region of the 0c-fl plane, giving rise to asymmetric 
phases. These structures are studied next. 

3.1.2. A s y m m e t r i c  Phase s .  The three types of asymmetric 
phases which may exist--from the simple consideration of single occupancy 
of sites--are the low-density/low-density, high-density/low-density, and 
power-law/low-density phases. It can be shown that the latter does not 
exist for q = 1; however, as the proof is rather lengthy, it will not be given 
here. Since the combination of power-law decays in the density of one 
species of particle and exponential decays for the other seems physically 
unlikely, we expect that such a phase would not exist even for q # 1. 

High-Density/Low-Density Phase. Without loss of generality it will 
be assumed that the positive particles are in the high-density phase; thus 
we have 

j+  =fl(1 - f l )  (3.15) 

j -  = a - ( 1  - 0 t - )  

The densities in the bulk are 1 - f l  and 0~-. The conditions for the existence 
of this phase are 

f l<  1/2, fl<ot + 
(3.16) 

0c- < 1/2, 0c-<f l  
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Substituting (3.15) into Eqs. (3.8) and using the restriction that ~ - <  1/2, 
we find 

1 + ~  1 
~t- 2 2 [(1 + 0~)2--40~fl] 1/2 (3.17) 

The current j -  and the feeding rate ~+ may then be deduced from Eqs. 
(3.15), (3.8). 

The conditions given in Eq. (3.16) define the region of existence of the 
high-density-low-density asyrmnetric phase in the ~-fl plane. It is found 
that this region is uniquely determined by only one of these conditions, 
namely 

ct + >f l  (3.18) 

See Fig. 6 and the discussion at the end of this section. Note that in this 
phase the current j+  is larger than j - ,  since or- < ft. 

Low-Density~Low-Density Asymmetric Phase. In this phase 

j+ =~+(1 -~+) 
(3.19) 

j -  = = - ( 1 - ~ - )  

The densities in the bulk are ~ + and =-.  Without loss of generality we take 
0c § > ~ - ,  which implies that j+  > j - .  Substituting into Eqs. (3.8), we find 
the following equations for ~+ and ~-:  

~+ = 1 - 1 o~+(1 - o c  + ) _ 1  ~ - ( 1  - o c - )  
oc P 

(3.20) 
1 

~-  = 1 - ~ + ( 1 - ~ + ) - l a - ( 1 0 t  - ~ - )  

A simple way to solve these equations is to define 

S = ~  + + ~ - ;  D = ~  + - 0 t -  (3.21) 

Taking the difference of equations appearing in (3.20), and using the 
definitions of S and D, we find 

In order to have an asymmetric phase we require D =~ 0, hence 

S = 1  ~,8 
~ - f l  

(3.22) 

(3.23) 
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Summing the equations appearing in (3.20) leads to 

[ ( 2=e _s)l  ''= 
D =  ( S - 2 )  \ c t+ f l  JJ (3.24) 

The values for the currents follow directly: 

j+  = �88 + D)(2 -- S -  D) 

j -  = � 88  D)(2 - S + D) 
(3.25) 

and the bulk densities ~+ and 0c- are equal to the half of the sum and 
difference of S and D, respectively. 

The conditions for the existence of this phase are 

ct + < 1/2, ~+ <f l  

0c- <1/2,  ~ -  <f l  
(3.26) 

These conditions define a region of the 0t-fl plane which is uniquely 
determined by only one of them, namely 

~+ <fl  (3.27) 

Comparing this last equation with Eq. (3.18), we see that on increasing fl 
the transition from the high-density/low-density phase to the low-density/ 
low-density asymmetric phase occurs when 0c + =ft. This condition 
corresponds to a shock for the phase of higher density (see the comments 
on Figs. 2a-5a below). 

An additional condition for the existence of the low-density/low- 
density asymmetric phase is that D be real. This is indeed the case as long 
as (3.27) is satisfied. At the transition to the low-density symmetric phase, 
D vanishes. This occurs either when S - 2, which is excluded since it would 
lead to bulk densities larger than 1/2, or when 

S =  2~,8 (3.28) 
oc+,# 

This relation together with (3.23) yield the following expression for 0C on 
the transition line between the low-density/low-density asymmetric phase 
and the low-density symmetric phase: 

ct + =0t -  = ct +fl--- 1 - (3.29) 
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Fig. 2. (a) Mean-field profiles for the power-law symmetric phase (a= I, //=2, 
N= 32. (b) Monte Carlo profiles for the power-law symmetric phase (cx= I, fl= 2, 
N = 256.' 
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Fig. 4. (a) Mean-field profiles for the low-density/low-density asymmetric phase (~= 1, 
fl=0.333, q= 1). (b). Monte Carlo profiles for the low-density asymmetric phase (a= 1, 
fl=0.3, q= 1). 
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Fig. 5. (a) Mean-field profiles for the high-density/low-density asymmetric phase (a= 1, 
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Typical density profiles corresponding to the two asymmetric phases 
are given in Figs. 2a-5a, which correspond to 0t = 1 and fl = 2, 0.4, 0.333, 
and 0.1 for a system size N =  32. Some comments are in order. In Fig. 5a, 
the bulk density of the phase of lower density (m here) is equal to ~- ,  
whereas the bulk density of the phase of higher density (p) is equal to 
1 - f t .  When fl increases, 0t- increases. The transition from the high- 
density/low-density phased to the low-density/low-density asymmetric 
phase is reached when fl = ~ § = 0.328956. On the transition line one species 
of particles (here the positive particles) display coexistence between a phase 
of higher density 1 - f l  and a phase of lower density 0t +. A typical con- 
figuration of the positive charges is thus composed of a density profile with 
a localized shock separating the two densities. 

Above this transition the bulk density of the phase of higher density 
is equal to ~ § This is the case in Fig. 4a. The transition of this asymmetric 
phase to the low-density symmetric phase is reached when the two bulk 
densities ~+ and ~-  are equal, i.e., when fl = 1/3. 

In summary, the phase diagram for q = I is given in Fig. 6, where we 
see four regions: the power-law symmetric phase, the low-density sym- 
metric phase, the low-density/low-density asymmetric phase, and the high- 
density/low-density asymmetric phase. The behavior of the two currents 
along the 0c = 1 line is given in Fig. 7. Note that although the low-density 
symmetric phase exists throughout the regions of existence of the nonsym- 
metric solutions, it becomes unstable to nonsymmetric perturbations. This 
can easily been checked numerically, at least for a finite system, by lineariz- 
ing the dynamical equations (3.3) around the low-density symmetric phase. 
The real part of one of the eigenvalues of the evolution matrix becomes 
positive at a point approaching the transition line (3.29) as N becomes 
large. The difference of currents j + - j -  behaves as (fl,._fl)v2 near the 
transition. 

For the sake of clarity we regroup here the equations of the three lines 
of transitions seen on Fig. 6. 

�9 From the power-law region to the low-density symmetric region: 

~fl 1 
oc+fl 2 (3.30) 

�9 From the low-density symmetric region to the low-density/low- 
density asymmetric region: 

~ + f l  1 ~fl (3.31) 
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�9 From the low-density/low-density asymmetric region to the high- 
density/low-density asymmetric region: 

~+ = f l  (3.32) 

where 0c + may be determined by Eqs. (3.8) and (3.17). 
Note that all three lines represent continuous transitions. 

3.2. The Case q ~  1 

The complete phase diagram of the model in the (ct, fl, q) parameter 
space may be rather complex. We did not study this phase diagram in 
detail. However, we would like to comment briefly on some of its features 
for q :~ 1. In particular, we examine in some detail the phase transition 
between the two symmetric phases: the power-law and the low-density 
ones. 

Let us consider first the possible bulk densities of the two types of 
particles. These densities may be obtained from Eqs. (3.6) with periodic 
boundary conditions. For the symmetric phases one has to take j + =  
j -  = j. One finds that these equations have two types of solutions, one with 
p = m and the other with p + m = 1. It can be shown that the latter solution 
is only relevant in the ct = ~ limit. Here we are interested in the p = m 
solution, for which we have 

1 ___ [ 1 - 4 j ( 2  - q ) ]  t/2 
p = m -  2 ( 2 - q )  (3.33) 

and 

j = p (  1 - 2p) + qp2 (3.34) 

To this solution, the condition p ~< 1/2 needs to be added, giving rise to two 
distinct behaviors for q < 1 and q > 1. For q > 1 the current is a monotoni- 
cally increasing function ofp.  It reaches its maximum j =  q/4 at p = m = 1/2 
corresponding to the power-law phase. For p <  1/2 the corresponding 
phase is the low-density one. On the other hand, for q < 1 the j(p) curve 
exhibits a maximum for p = 1 /12 (2 -  q)], j =  1 / [ '4 (2-  q)]. Again, the curve 
terminates at J=q/4 for p = m =  1/2, corresponding to the power-law 
phase. 

Returning to the open chain, we consider the current j(0c) and the bulk 
density p(ct) for fixed fl and q. For q > 1, j and p increase with cr At some 
critical ~ the current reaches its maximal value j = q/4 and a continuous 
transition to the power-law phase takes place. 
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Fig. 8. Current  and densi ty in mean  field for q = 0.5, fl = 1, and  N = 32, as a function of =. 
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in =. Hysteret ic  behavior  is clearly seen. 

On the other hand, the behavior of the q < 1 case is quite different. 
For small 0c there is a stable low-density phase. The current j and the 
bulk density p increase as ~ is increased. However, before j reaches its 
maximal value, j =  1 / [ 4 ( 2 -  q)], the power-law solution corresponding to 
p = m  = 1/2 and j =  q/4 becomes locally stable. The system thus has two 
locally stable solutions: a low-density and a power-law phase. This results 
in a first-order transition, as can be seen in Fig. 8. One can compare the 
mean-field result for fl = 1 with the exact solution obtained in Section 2. In 
the exact solution, the power-law/low-density transition is continuous for 
any q. The order of the transition is therefore wrongly predicted by the 
mean-field approximation. It would be interesting to study the nature of 
the transitions for fl ~ 1 beyond the mean-field approximation. 

To conclude this section, let us mention the presence of broken 
symmetry phases in mean field for values of q d: 1. 

4. MONTE CARLO SIMULATIONS 

In order to check that broken symmetric phases exist in the stochastic 
model and to verify the general features of the phase diagram obtained by 
the mean-field approximation, we carried out Monte Carlo simulations of 
the model. 
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The method used for the simulations follows closely the definition of 
the dynamics given in Section 2. Density profiles are obtained by averaging 
the occupations of each site over the simulation; densities of each species 
p + and p_  by taking the mean of the profiles over all sites. The currents 
are defined by 

j_+ N• (4.1) 
( N +  1)Nst 

where N+ is the total number of positive (negative) particles which have 
moved in Nst Monte Carlo steps/site on a lattice of N sites. For symmetric 
phases, these quantities are well defined. Figures 2b and 3b show the density 
profiles of the two symmetric phases. 

The existence of nonsymmetric phases may be identified as follows. For 
well-chosen parameters, e.g., 0~=q= 1 and fl=0.1,  one observes that the 
finite-size system flips in time between two states: one in which p+ =p~,  
J+ =J~, P -  = P2, J -  =J2, the other one, symmetric to the former, such that 
P+ =P2, J+  =J2,  P -  = P l ,  J -  = J l .  

The flipping time T(N) between these equivalent nonsymmetric phases 
increases as the system size increases. Numerical studies of r(N) for 
N~< 160 suggest that r(N) increases exponentially with N, (23) indicating 
that spontaneous symmetry breaking takes place. 

Therefore, for a fixed system size N, when time increases, all quantities 
defined above (profiles, densities, and currents) should appear progressively 
symmetric, i.e., equal for the two species. The right quantities to measure 
should therefore be symmetric combinations of these, such as the sum and 
absolute difference of densities or currents. Furthermore, a finite-size 
analysis would be required in order to get accurate quantitative estimates 
of these quantities, especially when approaching the transition to the sym- 
metric phase, for fl ~ 0.3 in the case 0c = q  = 1 considered here. 

Instead, in order to have a quick illustration of the presence of broken 
symmetric phases we measured the profiles, densities, and currents for each 
species, taking the time of the simulation small compared to the flipping 
time r(N). This procedure is good when fl is small enough, but becomes 
more problematic when approaching the transition f l~ f lc .  The results 
found for this region are therefore just indicative. 

Let us give some comments on Figs. 2b-5b. They show qualitatively 
the same behavior as the corresponding Figs. 2a-5a found in the mean-field 
approximation. A noticeable difference between the stochastic model and 
its mean-field approximation are the behaviors of the decays of the density 
profiles at the boundaries, as in the one-species case. (19) Figure 7 shows 
(J+ + J - ) / 2  and I J§  - J - 1 / 2  for q = 1, 0t = 1 plotted against fl for a system 
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of 256 sites. Note the overall striking agreement between the values of these 
quantities obtained in simulations with those of the mean-field theory. 

As in mean field we checked the presence of broken symmetry phases 
for values of q :~ 1. 

5. CONCLUSION 

In the present work we studied a simple one-dimensional driven dif- 
fusive process for two species which exhibits spontaneous symmetry breaking. 
This is an asymmetric exclusion model of two oppositely charged particles 
driven by an electric field on an open chain. The positively charged par- 
ticles are supplied at the left end and they leave the system at the right end. 
Similarly, the negatively charged particles are supplied at the right end 
and they leave the system at the left end. The system is invariant under 
charge conjugation combined with space inversion. The model is studied 
using the mean-field approximation and Monte Carlo simulations. Its 
steady-state properties can also be studied exactly in a certain limited range 
of the parameter space defining its dynamics. This may be done by the 
matrix method which was recently introduced. ~2~ Beyond symmetric 
phases, two phases in which the currents of the positive and negative 
charges are different from each other are found, suggesting that spon- 
taneous symmetry breaking takes place. These phases exist for values of the 
parameters outside the region where the exact solution was obtained. It 
would be interesting to know whether exact solutions could be found using 
matrix methods for any values of the parameters defining the model, and 
in particular in the region in which symmetry breaking does take place. 
Extensions of the present study to higher dimensions would also be of 
interest. 

We conclude by showing how the model we have studied may also be 
viewed as describing an evolution process of a moving interface. To 
demonstrate this point consider a one-dimensional solid-on-solid model 
and let hi be the height variable at site i ( i=  1 ..... N). The heights take 
integer values with the restriction that the heights of nearest-neighbor sites 
do not differ by more than 1. During an infinitesimal time interval dt, each 
bulk site i (i = 2 ..... N - 1 )  is updated according to the following rule: the 
height is increased by 1= 1, 2 with probability Wi(h i_ ~(t), hi(t), hi+ i(t); l) dt. 
The probability per unit time takes the form 

Wi(hi_~(t), hi(t), h;+ t(t); 1) 

= f l  for h i + l = h i = h i _ l - 1  or h i _ l = h i = h i + , - I  (5.1) 
otherwise 
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Wg(h~_ l( t), h~(t), h~+ l(t); 2) 

{qo for h , + , = h , - i = h ~ +  1 
otherwise (5.2) 

The end sites i = 1 and i = N are updated by a different rule. They are 
increased by 1 with probability W l ( h l ( t ), h 2( t ) ) dt and W N( h N-- I ( t ), h N( t ) ) dt, 
respectively. 

The W's take the form 

Wl(hl(t), h2(t)) = hi = h 2 -  1 (5.3) 

otherwise 

i h N = h N - I  
WN(hN_ l(t), hN(t)) = hN = hN-l  -- 1 (5.4) 

otherwise 

It is easy to see that this growth model is equivalent to the two-species 
asymmetric exclusion model by identifying h i - h i + l =  l, O, - 1  with a 
positive particle, a vacancy, and a negative particle, respectively. 

Thus one can think of a configuration of particles on the lattice as 
representing an interface composed of terraces. The interface grows by 
the steps at the edge of the terraces moving in from the boundaries: the 
dynamics of a positive particle corresponds to a step moving in from the 
left boundary and the dynamic of a negative particle corresponds to a step 
moving in from the right boundary. When two steps moving in opposite 
directions meet, a new terrace, and thus two new steps, are nucleated with 
rate q. 

This growth model is closely related to the one recently studied in 
refs. 8 and 13. The main difference is that in the present model, the evolu- 
tion of the bulk sites [Eqs. (5.1)-(5.4)] has two conserved quantities 
(the number of upward and the number of downward steps), while in the 
previous model only the difference between the upward and the downward 
steps is conserved. 

In terms of the growth model the phases we have studied have natural 
interpretations. The symmetric phases correspond to power-law or expo- 
nential decay of the interface height to a fiat interface far away from 
the boundaries. The line of shocks corresponds to V-shaped surface con- 
figurations. The symmetry-breaking transitions correspond to the interface 
spontaneously acquiring a slope: either a large slope in the case of the high- 
density/low-density phase or a weak slope in the case of the low-density/ 
low-density phase. 

822/80/1-2-7 
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APPENDIX A. PROOF OF MATRIX ALGEBRA (2.8)-(2.14) 

Here we prove the matrix algebra (2.8)-(2.14), which allows us to 
obtain the exact solution of the model in the case fl = 1. The proof  we give 
here is based on that given in ref. 20. Let us begin by writing down the 
master equation: 

d 
e N ( s , ,  s2 ..... sN) 

=Y', (h,)s,~s~ P~(s'l, s~,..., s~) 

N--I  
+ Y~ Y. (h)~,,s,+,:.,.;,s;§ ..... s'i,s'i+l ..... sN) 

i=l  s~,s~+l 

-~- E (hN)sN; s'N P N ( S I  ..... S N _ I ,  S%) (A1) 

Here s; = - 1, O, 1 and labels the state of  site i. The elements of  the matrices 
hi ,  h, h u  represent the transition rates into configurations (off-diagonal 
elements) and out of  configurations (diagonal elements). Thus 

(hl),,:~; 

is the transition rate from a configuration with the first site in state s'l to 
a configuration identical except that the first site is in state sl ,  i.e., 
h I represents transitions due to events at the left-hand boundary.  Similarly 
h represents transitions due to the particles hopping between two non- 
boundary  sites and h~v represents transitions due to events at the right- 
hand boundary.  One can easily construct these matrices and one finds that 
the only nonzero elements are 

(hl)1:o= -(hl)o:o=~ 

( h i )o :  - i  = - ( h l ) - 1 : - 1  = 1 

(h) - i .o :o , -1  = - ( h ) o , - I ; o , - 1  = 1 

(h)o. 1: 1,o = - (h)l, o: 1, o = 1 

(h)_1 ,1; i ,_1  = - ( h ) l ,  - l ;  i, - I  = q  

(h~)-l,o= -(hi)o;0=~ 
(hN)o: 1 = -- (hN)l; I = 1 

The fact that the elements of each column of  all the transition matrices add 
up to zero simply reflects the conservation of  probability. 
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Now let us assume that there exist three coefficients x_  i, Xo, x~, such 
that the following conditions on the weights f N  (where PN = f N / Z N  and Z N  
is the normalization, which is independent of configuration) are satisfied 
for each choice of si: 

(h,), . t:slfN(S'l ,  S2,..., SN) 
"i 

= x s ,  fN_I(S2 , . . . ,SN)  (A2) 

~, (h)~,., ,+,:,;. .%,fN(Sl,. . . ,  S'i, s'i+l ..... SN) 

= -- xs, f N _  l(Sl ,..., S , _ , ,  Si+ , ..... SN) 

+ Xs ,+ , fN- i (S l  ..... Sl, Si+2 ..... SN) (A3) 

Y'. (h N)~u; s'~fN(Sl . . . . .  SO-  I' "TN) 

= -- X,NfN-- l(Sl ..... SN-- I) (A4) 

If such coefficients x I, xo, xl exist, then the fN (or PN) given by 
the equalities (A2)-(A4) are automatically steady state quantities 
[ (d /d t )  PN = 0], since on substituting (A2)-(A4) into (A1), the rhs of (AI) 
is zero. When we replace f N  by their expressions (2.1)-(2.3) and substitute 
into (A2)-(A4), we obtain the following conditions: 

0 = X _ l  + x  o + x l  

~( wl A = x , (  Wl 

( wI E =  - x _ , (  W[ 

D A  = x l A - x o D  

A E =  - x _ l A  + x o E  

q D E = x l E - x _ l D  

~A I V ) =  - x  ~ lV)  

1) IV) =x~ IV) 

which are the same as (2.8)-(2.14) when 

xo=0 ;  x l = q ;  x_ l  = - q  (A5) 

We note that if one tries to repeat the argument outlined above for 
general /~, then one finds a set of algebraic rules which are inconsistent 
except when 1~--- 1. 
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A P P E N D I X  B. C A L C U L A T I O N  OF A S Y M P T O T I C  F O R M S  OF 
<wl G n Iv> 

The first step in calculating the matrix element (WI G"[V) is to 
diagonalize the matrix G of (2.29), (2.30), requiring a solution of the eigen- 
value equation 

G [~) =2r (B1) 

Generically the eigenvectors are of two types, a bound-state vector of 
the form 

14' 2 = I x  2 (B2) 

with 0 ~< x ~< 1, and an unbound-state eigenvector of the form 

cos (0+p)  

[q~u) = cos(20+p)  (B3) 

cos( 30 +/2) 

Let us start by looking at the bound-state eigenvector. By substituting 
[~b) back into the eigenvalue equation (B1) we find the following condi- 
tions o n  z~ b and x: 

1 
Ab- [q(2_q)]l/z (B4) 

(1 _ q ) 2 ~ 2 +  [2(1 --q)--q/a] x +  1 = 0  (B5) 

with a corresponding eigenvalue 

2b = (1 +X)2/X (B6) 

From the conditions on x given in Eq. (B5) it may be been that there can 
at most be two distinct bound-state eigenvalues. 
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For the unbound eigenvalues the equivalent conditions are 

cos/.t 
Au - [q(2 - q)] ,/2 (B7) 

with 

[q/oc + 2(q -- 1)] + [q(2 - q) -- 2 ] cos 0 
tan # = q(2 - q) sin 0 (B8) 

There are an infinite number of possible eigenvectors which satisfy these 
conditions, giving rise to a continuum of eigenvalues 2u(0) indexed by 0: 

2u(0) =2(1 +cos  0) (B9) 

The most general solution to (11 G" 11) in terms of these unnormalized 
eigenvectors is 

2 It 2 n (11Gn 11) F~2b, i( 11~bb. ~)(~bb. ~ J 1 ) 1 ) = + F2~b,_~( IG, z ) ( G ,  2I 1 

~ dOzT,(O)<l I,/,u(O)><G(O)l 1) (BIO) 
q - a  ~ r r  _ 

where /"1, /"9- are normalization constants for the bound eigenvectors, to be 
calculated. 

From Eq. (B5) and the condition on x it is found that the following 
numbers of bound-state eigenvectors exists: 

No bound states when 

-q~< (2 - -q)  2 
OC 

and q < 2  (Bl l )  

One bound state when 

q > ( 2 - q )  2 (B12) 

Two bound states when 

q ~ < ( 2 - q )  2 and q > 2  (B13) 
tX 

We shall look in turn at the solutions with no, one, and two bound- 
state eigenvectors. 
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When there are no bound-state eigenvectors [q/o~ <~ (2 - q)2 and q < 2] 

( 1 1 G " I I >  

f"~ cos2. 
= -,~ 2"(1 + cos 0)" q(2 - q---~ 

f 
" dO 2"q(2 - q) sin 2 0( 1 + cos 0)" 

= _ .  ~ q2(2 _ q)2 sin 2 0 + [ q/~x + 2(q - 1 )( 1 + cos 0) - q2 cos 0] 2 

(B14) 

This integral is solved in the limit of large n, using the saddle-point 
method,  giving 

( q(__22 - q___)) 4 "+ l_ q 

~ [ ( q _ 2 ) 2  q/oc]2~zl/2n3/2, ~#(q -2)2 
( l l a " l l ) ~  / 4,+1 

~ 2-~-2 -----~ ~ '  q = ( q - - 2 ) 2  0c 

(B15) 

Considering now the region q/ot > ( q -  2) 2, where there is one bound- 
state solution with 

2 ( q -  1) +q/o~-- { [ 2 ( q -  1) + q / ~ ] 2 -  4(1 _q)2}  1/2 
x -  (B16) 

2(1 _q )2  

and the normalization F~ given by 

F~ = q(2 -- q)( 1 -- x 2) 
1 - - ( 1 - - q ) 2 x 2  (B17) 

it may be readily seen that 

(11G" 11) .~2g ~" F~ 1 + (4"y' 4~2q(2 -  q) "~ 
~q(2- -q)  \)tbJ [q - -0 t (2 - -q )2 ]  2 ~U2n3/2j (B18) 

From Eq. (B18), if q < 2, then ( 1 [ G" l1 ) approaches its limiting value 
from above, while if q > 2, it does so from below. This is reflected in the 
density profiles for the holes, where the density is found to decrease from 
the boundaries to the bulk value for q < 2 and increases to its bulk value 
if q > 2 .  

The last region of interest is when q > 2 and q/ot < (2 - q)2. Here there 
are two bound-state solutions with eigenvectors having values of x corre- 
sponding to the two solutions of Eq. (B5). Let the x corresponding to the 
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largest eigenvector be x~ that  corresponding to the second largest eigen- 
vector be x 2. Both eigenvectors will have a normalization given by 
Eq. (B17). F rom Eq. (B5) it may be seen that ( 1 - b 2 ) x ] x 2 = l ,  which 
gives 

F2 q ( 2 -  q)(1 - x  2) (B19) 
' - (1- - q)----i (x--x2_---~2) 

q (2- -  q)(1 - x ~ )  
1-,2 _ ( 1- -- q)2 (x-~xS--x2) (B20) 

When q >  2, F 2 is positive, but F 2 is negative, since x I > x  2. This gives 

< l l  a"  I I )  ~ "  r ~  1--  F2 2 " 
b., q(2 -- q) 1-,2 

( 4 ) "  40c2q2(2 - q)2 "[ 
+ ~ 2[q_o~(2_q)212zrl /2n3/2j  (B21) 

Again it is seen that since q > 2, ( l l  G " [ 1 )  approaches its limiting 
value from below, and hence the corresponding density profile for holes 
will attain its bulk value from below. 
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